

Connector Design and Qualification for High Reliability CPCI SERIAL SPACE Applications

Presented by:

Gaby Cristian Mindreci - Performance Interconnect SAS

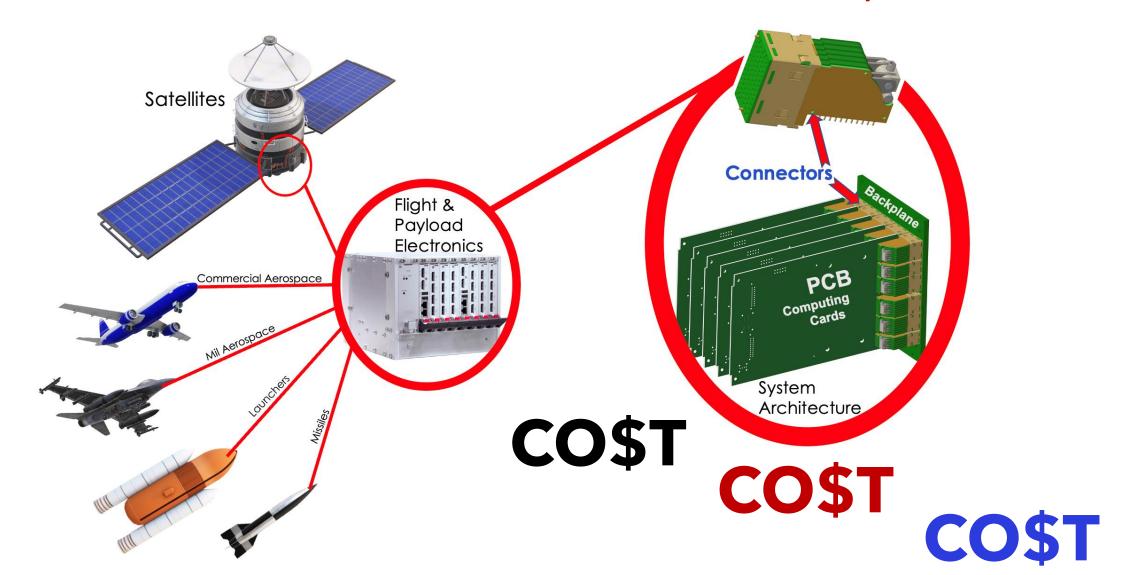
Dimas Morilla - ALTER TECHNOLOGY

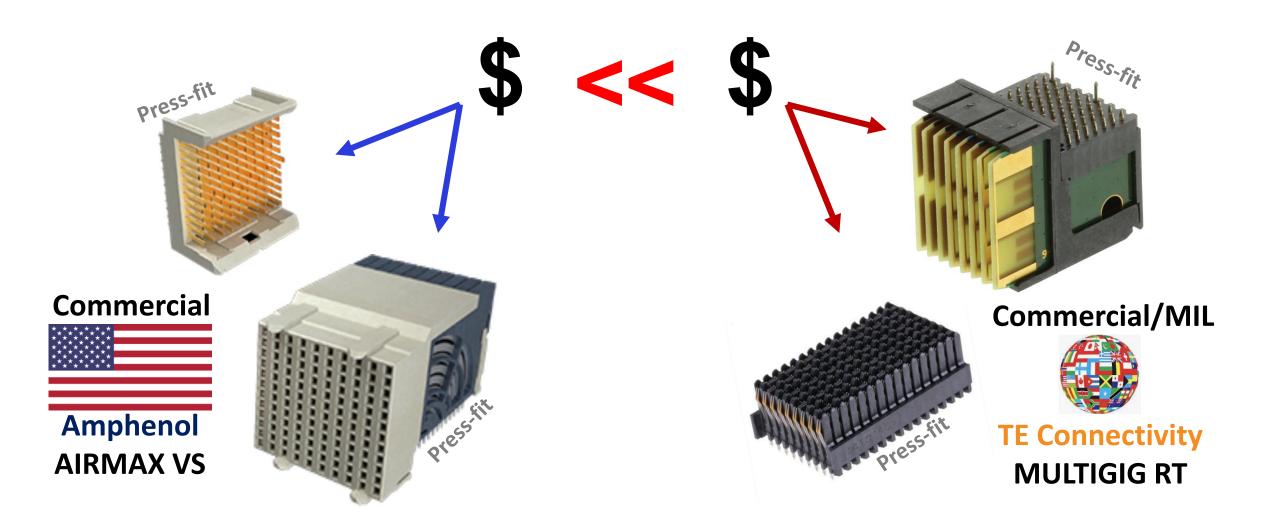
1 Background

2 Solution

3 Specification

4 Test Plan




Together ahead. RUAG

Where does it go and why choose

cPCI Serial and not open VPX?

Connectors in cPCI Serial and open VPX

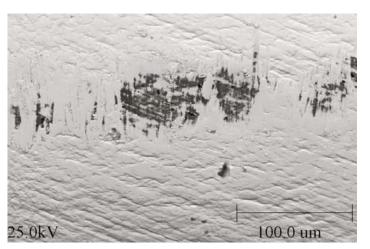
...but how about technical CHALLENGES?

From page 18 of:

CompactPCI® Connectors In Space Flight Applications

Prepared By: Richard Williams (Code 562) Kusum Sahu (Code 562) Reviewed By:

Dr. Henning Leidecker, (Code 562) Terry King (Code 562) Dr. John Day (Code 560) AETD cPCI Review Committee


August 3, 2007

V. Reliability Issues and Mitigation Strategies Employed by NASA Space Flight Hardware Builders

"The two-point contact construction strategy employed in CompactPCI® connectors, coupled with the lack of a clamping mechanism to hold the mated pair together, leads to the intermittent loss of connectivity during vibration. Furthermore, fretting of the plating materials due to the relative movement of the blade shaped pins and bifurcated socket tines leads to an increase in contact resistance. Increased contact resistance directly correlates to a decrease in the quality of the electrical connection.

"Cross-Section of CompactPCI® Bifurcated Socket Tines (Diane Kolos, NASA/GFSC). Magnification is 8x."

"Example of Fretting as reported in Ball Aerospace DPA following vibration testing. Darkened region is exposed base metal."

Recent TIMELINE related to cPCI Serial Space connector developments:

AUG 2017

PICMG released cPCI Serial Space Specification CPCI-S.1 R1.0

during 2020

ADHA

Advanced Data Handling Architecture

consortium

formed by

ADS, TAS & Ruag

MAR 2021

ADS

releases specification for cPCI Serial Space Connector

Ref: DOC-EEE-000218505

SEPT 2021

MIN OREACH

files IP protection for Single-Piece
High Data Rate
Backplane Connector
HYPERBITS TM

MAR 2022

MIN OREACH&

TECHNOLOGY

enter in collaboration agreement

to validate and qualify HYPERBITS™ to ESCC 3401 and CPCI-S.1 R1.0

APR 2022

ESA releases

RFP for Procurement and Reliability
Assessment of High Data Rate
Press-Fit cPCI SS connectors

JUL 2022

ESA Tender Action is released under **ARTES**

for development of space qualified high-density electrical interconnections for CPCI-S.1 R1.0

AUG 2022

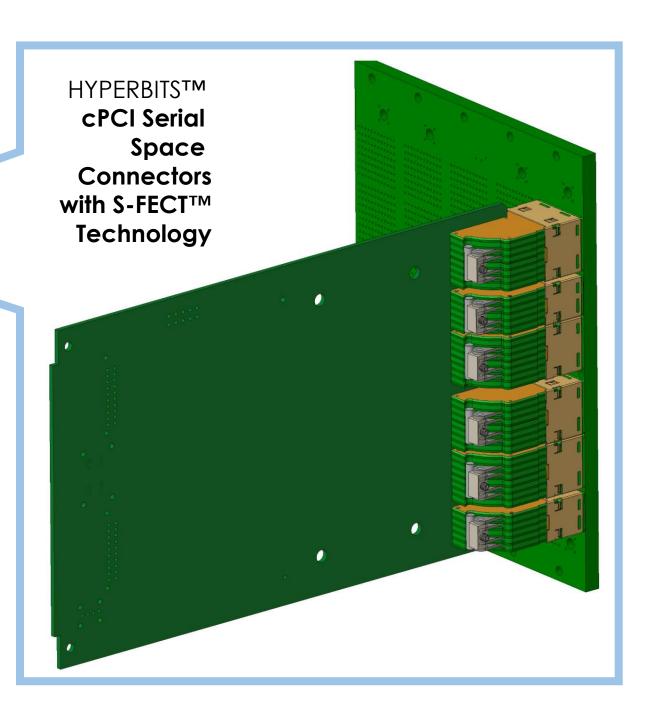
MIN DREACH

awards license for S-FECT™ Technology & HYPERBITS™ to

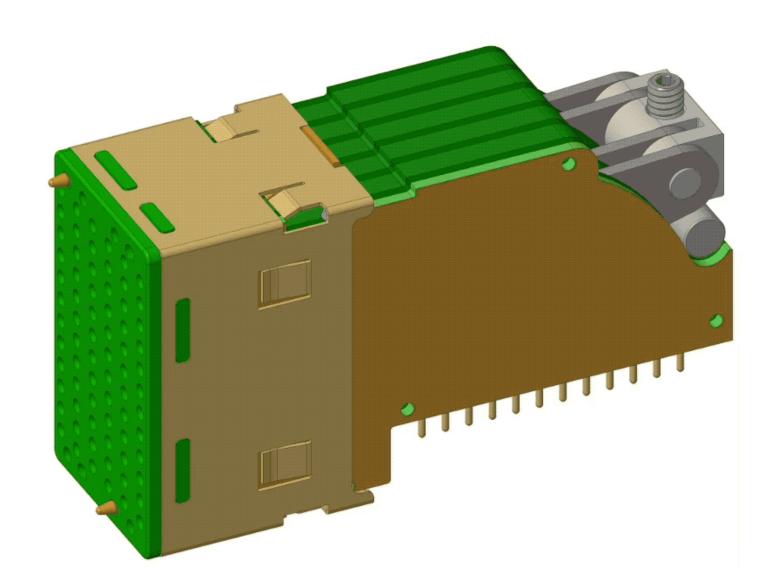
DEC 2022

ALTER

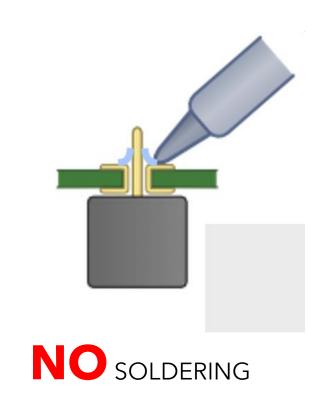
TECHNOLOGY

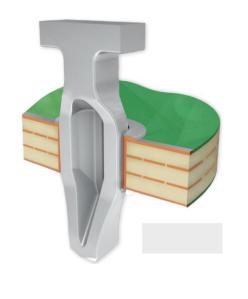

shall commence evaluation activities of CPCI Serial commercial connectors and HYPERBITS™ connectors 1 Background

2 Solution


3 Specification

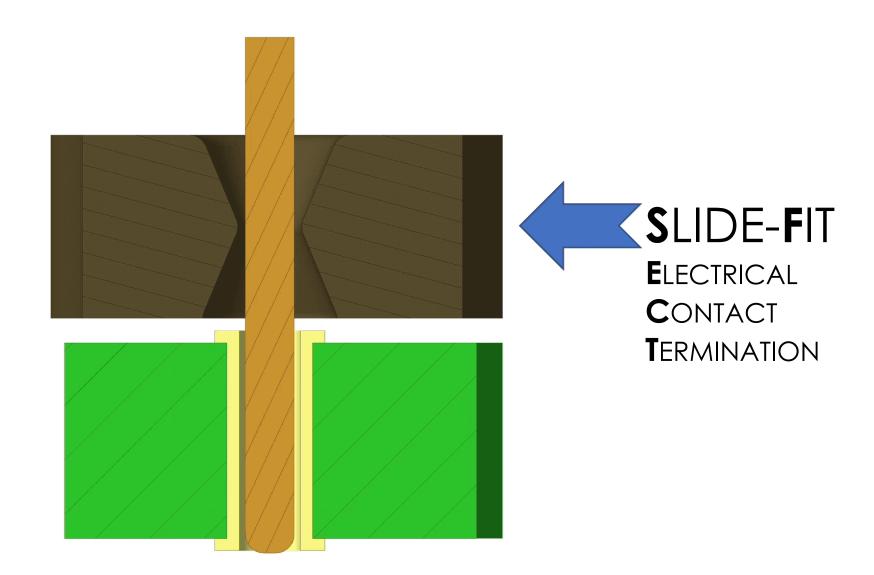
4 Test Plan


5 Conclusion



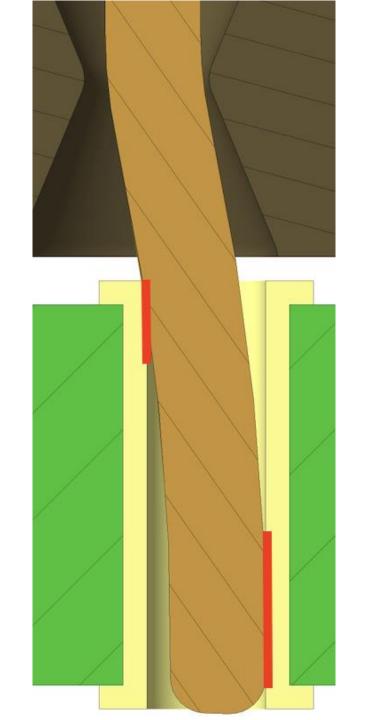
HYPERBITS CONNECTOR with S-FECT Technology

Why is HYPERBITS superior?



... because it employs S-FECT™ Technology

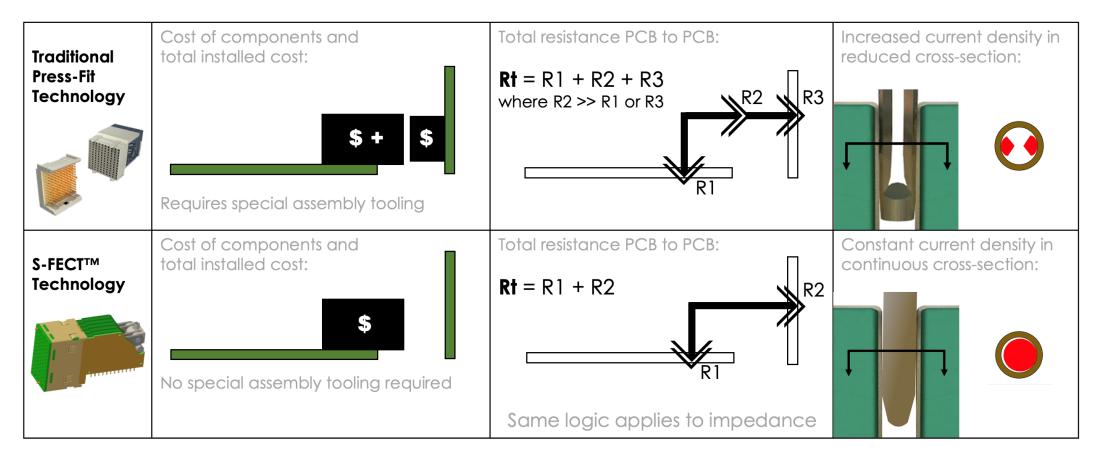
What is S-FECT Technology?



External Pressure Element Technology

Already qualified to

Mil - 39029 GSFC-311 ESCC-3401


S-FECT
Technology

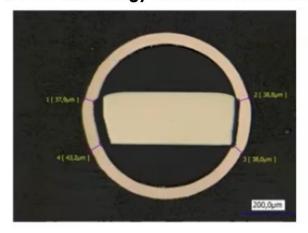
Similar mechanism of operation

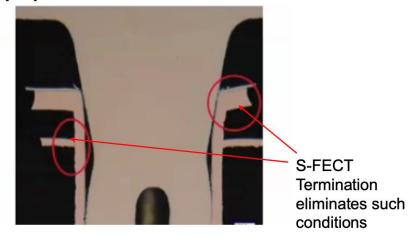
<Higher
normal
Force</pre>

>Lower resistance

Advantages in S-FECT Technology?

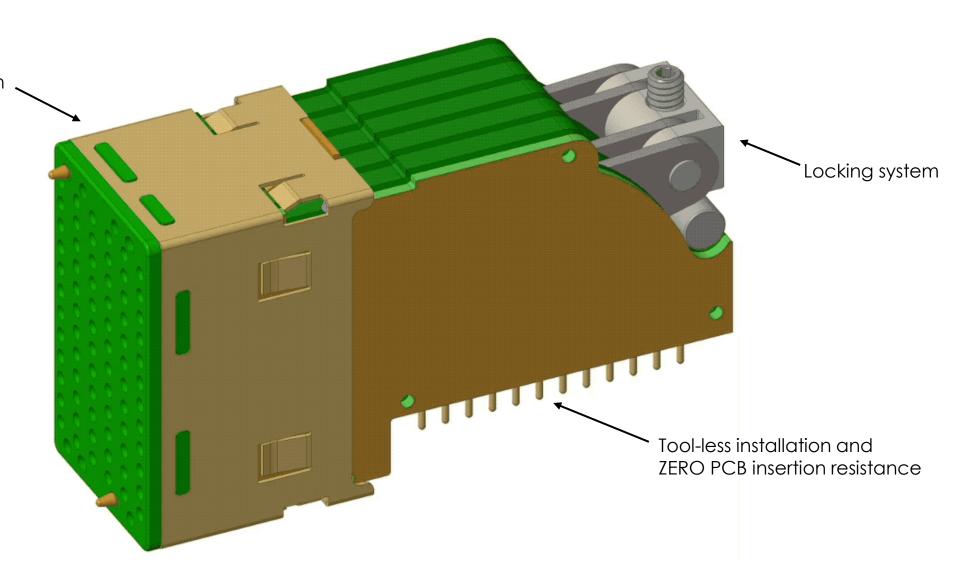
Single-piece connector which mates directly with the backplane!

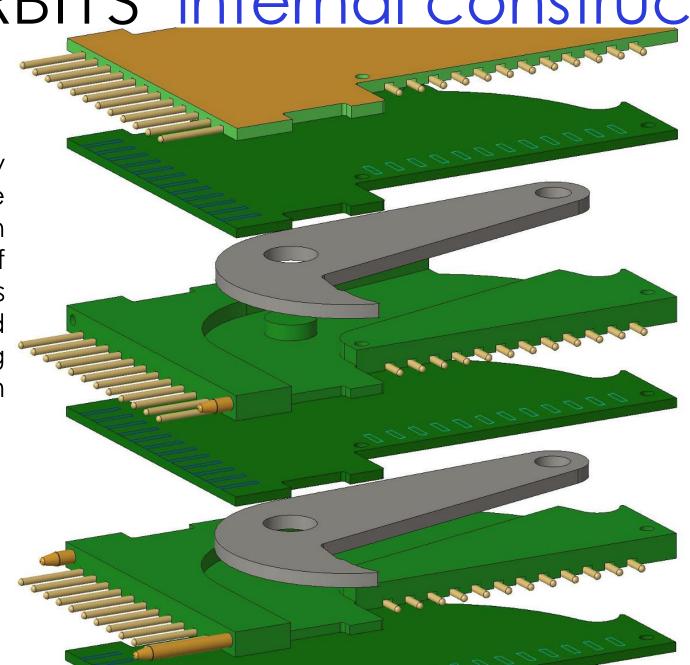

Advantages of S-FECT Technology compared to press-fit



- ZERO installation force
- ZERO specialty tools
- ZERO wiping on PTH
- ZERO jet effect
- ZERO deformation
- ZERO loose particles
- ZERO inspection

- MINIATURIZATION FRIENDLY
- SUPERIOR THERMAL BEHAVIOR
- LOWEST MANUFACTURING COST
- LOWEST INSTALLED COST


S-FECT technology eliminates unnecessary layer lift and deformation


HYPERBITS CONNECTOR with S-FECT Technology

Blind-mating with protection faceplate and post-insertion offset system

HYPERBITS internal construction

Connector body features composite construction with alternating layers of PCBs and spacers and an integrated mechanical locking system

HYPERBITS internal construction state-of-the-art in materials performance

PROVEN PCB PERFORMANCE FOR SPACE APPLICATIONS

Tachyon®100G up to 110Gbps

I-Tera® MT40 up to 50Gbps

w w w. isola-group. c o m

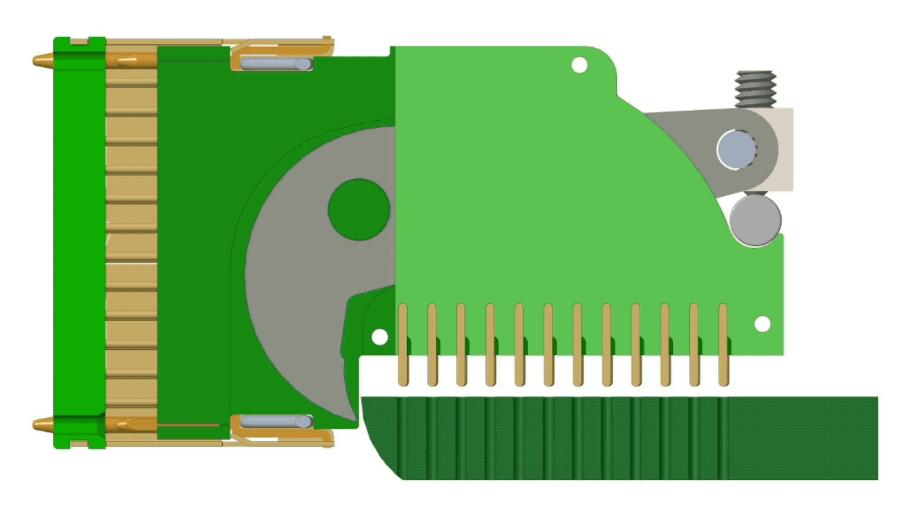
ISOLA PRODUCT SI PERFORMANCE RANGE

Product	Dk	Df	5 G	bps	10 0	Sbps	15 0	Sbps	20 0	Sbps	40 0	Sbps	60	Gbps	80 6	Sbps	100	Gbps
IS415	3.72	0.012																
IS415HR	3.80	0.012																
FR408	3.67	0.012																
FR408HR	3.68	0.092																
I-Speed	3.64	0.006																
TerraGreen	3.44	0.0039																
I-Tera MT40	3.45	0.0031											1					
Tachyon 100G	3.02	0.0021																
- Full ros	outgassing: TML 0.14%, CVCM <0.01%							1%										

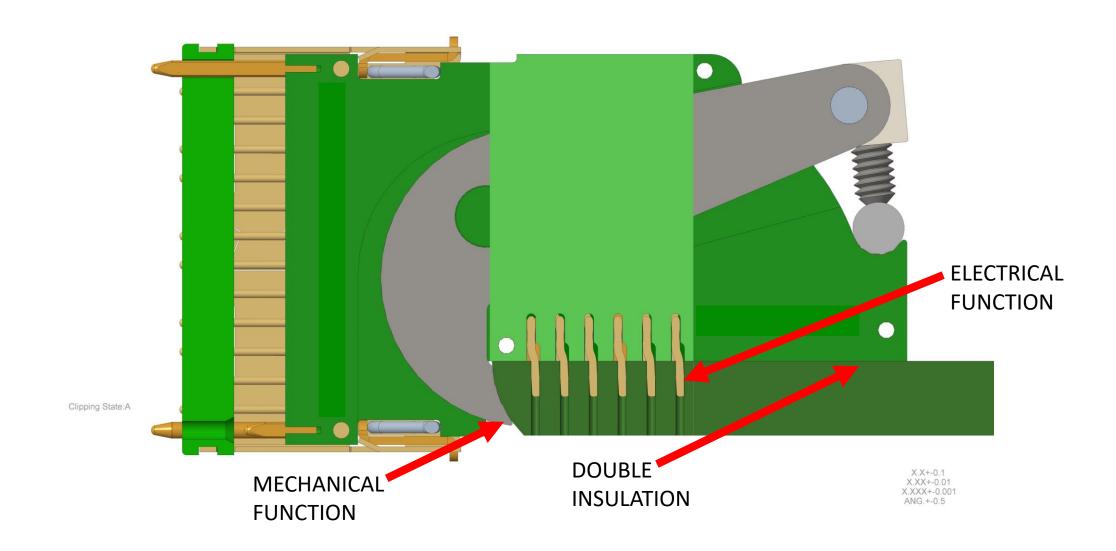
- Full range of mid to ultra low loss products
- Robust resin technology for increased design density
- Complete range of constructions for design flexibility

HYPERBITS internal construction state-of-the-art in materials performance

HIGH PERFORMANCE COPPER ALLOY

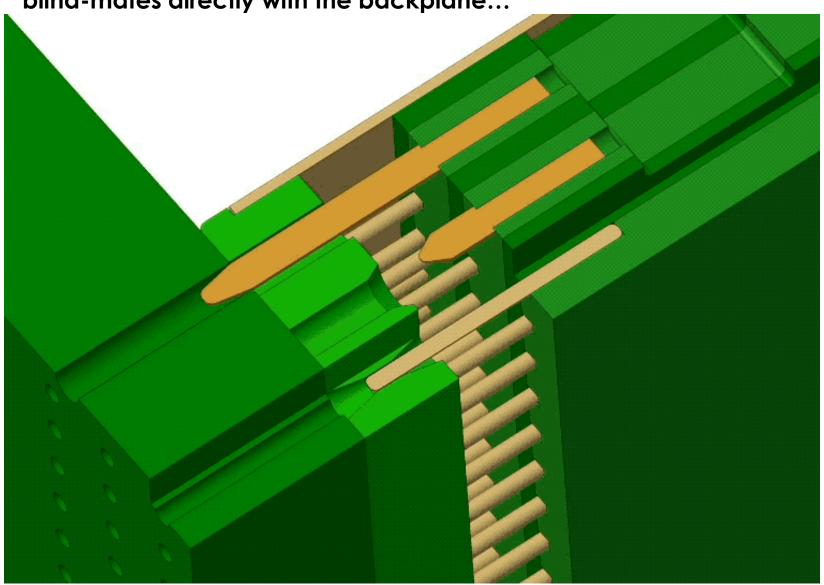


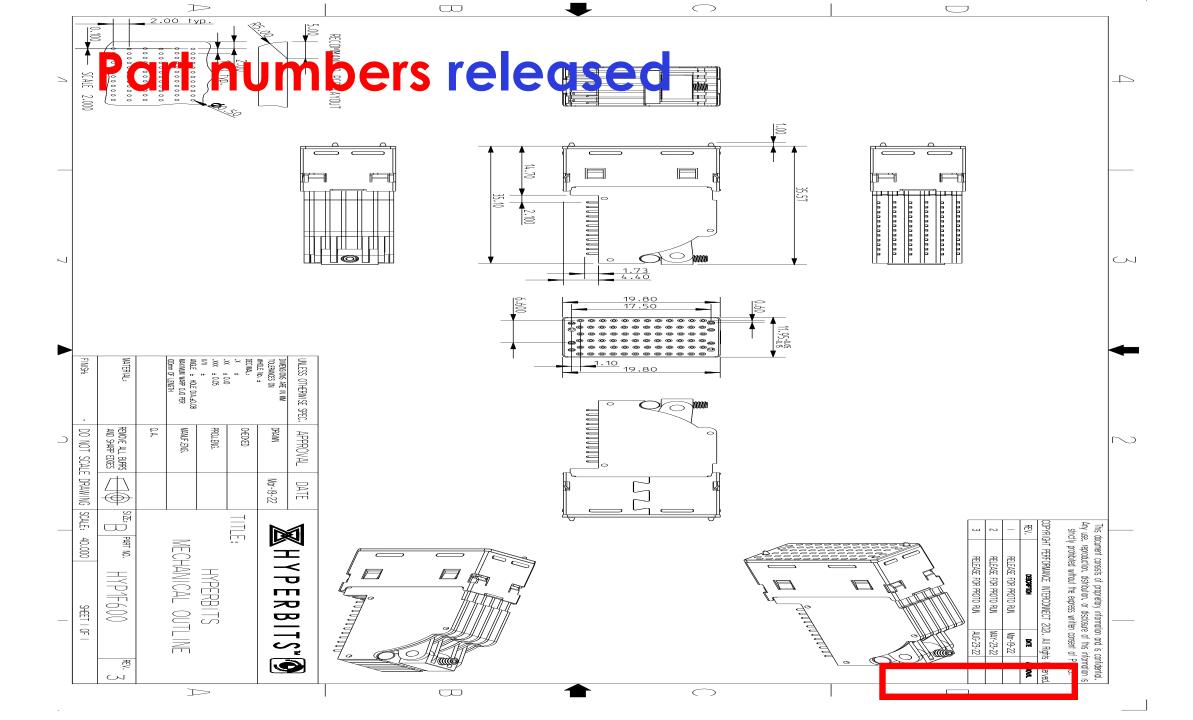
- Superior flex-life
- Best in class conductivity
- Excellent mechanical strength
- Resistance to thermal softening

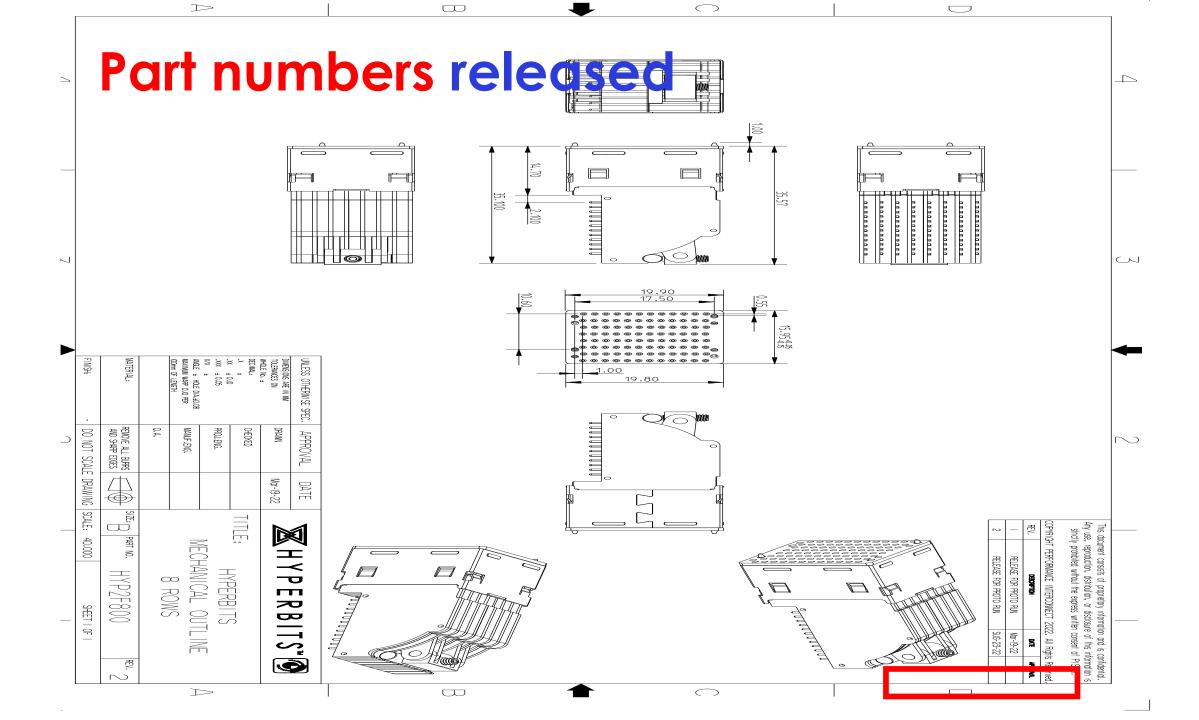

www.fiskalloy.com

HYPERBITS CONNECTOR card installation:

no tools, no soldering, only a hex driver...

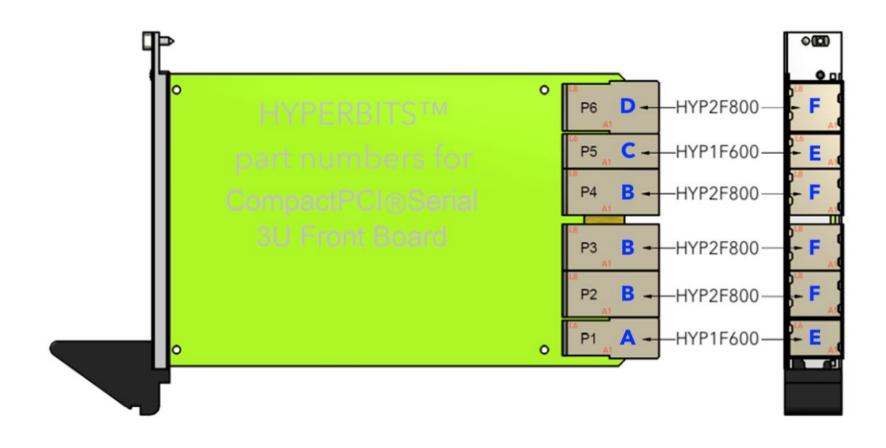



MECHANICAL FUNCTION fully separated from ELECTRICAL FUNCTION



HYPERBITS CONNECTOR

blind-mates directly with the backplane...



NOITAL OWN ON NOITAL

2part numbers replace 6part numbers

1 Background

2 Solution

3 Specification

4 Test Plan

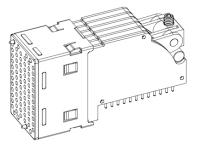
5 Conclusion

This section compares the

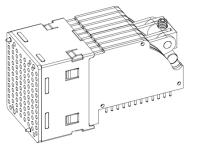
AIRBUS

ADS spec

Ref : DOC-EEE-00021850 Issue : 02 Rev.:00 Date : 15/03/2021

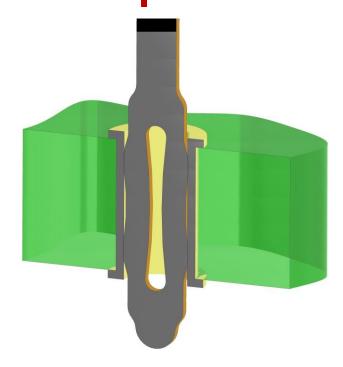

Front board connectors with the following configurations:

6 columns x12 rows / 72contacts / 2 or 4 walls 8 columns x12 rows / 96 contacts / 2or 4 walls


Front backplane connectors with the following configurations: 6 columns x12 rows / 72contacts 8 columns x12 rows / 96 contacts

with the

HYPERBITSTM DESIGN SPECIFICATION


6 columns with 2mm pitch x 12 rows, 72 contacts, 24 differential pairs

8 columns with 2mm pitch x 12 rows, 96 contacts, 32 differential pairs

Description	ADS spec	HYPERBITS™ spec	Condition / Comments
Plating thickness on contacts:	1.27μm minimum	1.27µm minimum	electroplated gold per ESCC23500 §3.3
Materials of concern:	Pure tin (Sn)	Pure Tin (Sn) NOT PRESENT	Not allowed
Mass:	to be supplied by MANUF	TBD	Value remains TBD
Operating temperature range:	-55°C to +125°C	-65°C to +155°C	Qualification temperature range is -55°C to +125°C
Marking	part number, date code	part number, date code	engraved or laser marked
Mating/Unmating cycles a)backplane b)card	500 cycles	1000 operations with a&b	Value tbd with MANUF per ESA/ESCC 3401 § 9.18
Mating/Unmating Force/contact a)backplane b)card	M 0.45N.st to 0.60N / U ≥0.15N	a) 0.6N max b) 0.01N	Per ESA/ESCC 3401 § 9.20 Mated and unmated 4 times S-FECT ADVANTAGE
Contact retention 5 pcs or 20% to be tested	4.4N for 6 sec.	4.4N for 6 sec.	ESA/ESCC 3401 § 9.17
Axial displacement MAX 0.3mm	10N for 6 sec.	10N for 6 sec.	ESA/ESCC 3401 § 9.17
High Speed Data Rate:	25 Gbps	25 Gbps – phase 1	Differential signaling phase 2: 35 Gbps phase 3: 56 Gbps phase 4: 100 Gbps
Differential impedance:	100Ω	<u>Max 105Ω – Min 95Ω</u>	+/- 5% target: 95Ω min and 105Ω max
Contact resistance between mated contacts	20 mΩ	Not Applicable	ESA/ESCC 3401 § 9.1.1.3
Contact resistance between press-fit pin to PCB	300 μΩ ΜΑΧ	Not Applicable	IPC 9797 §4.3.4 Test Method IEC 60512 test Method 2a. Measured during Qualification
Contact resistance between Slide-Fit Pin and PCB		≤ 4mΩ	with a)backplane and with b)card
Maximum resistance per line measured PCB to PCB	≤ 20.6mΩ	≤ 10mΩ 50% improvement	From trace on backplane to trace on card including interfaces
Current rating per contact:	2A	2A	1A minimum derated current over temperature range. 2A all contacts under load with maximum 35°C temperature rise, 1.6A continuous all contacts @30°C rise
Working voltage	28V	96V at any altitude	
Insulation resistance	1 GΩ min	1 GΩ min	ESA/ESCC 3401 § 9.1.1.1 Test Method IEC 512-2, Test 3a, Method B. 500V +/-50V
DWV	750 VRMS	750 VRMS	Between PCBs
Corona Effect	15VRMS	15VRMS	at 33000m per IEC-68-2-13
Back-drilling compatibility a)backplane b)card	required	a) YES b) YES	MIN 1.6mm via depth from top of PCB

Note: 3 REWORKS & Repairability requirement

Hard-compliant press-fit is damaging to PTH

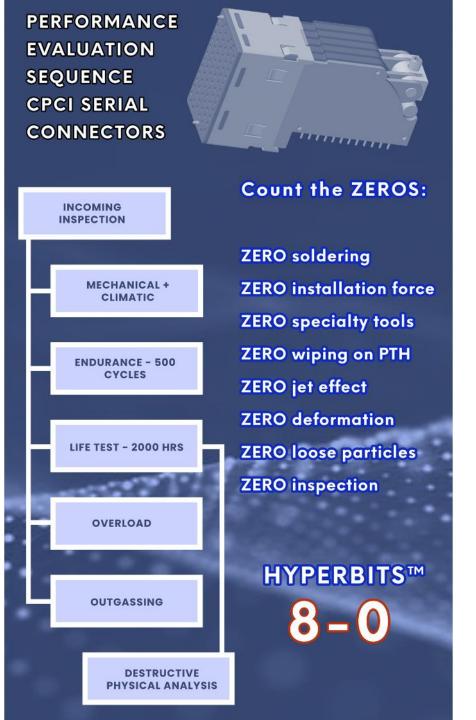
9 PRESSFIT SPECIFICATION

It shall be noted that ECSS-Q-70-61 is being amended to cover the assembly verification for solderless solutions except press-fit but can still apply: mate/demate, 3 reworks, vibration (+electrical monitoring), shock (+electrical monitoring), damp heat (+electrical monitoring), 500 thermal cycles + microsections and 2000h Life test.

Test item	Parameter	Test Method	ESA/ESCC Requirements
Spring force measurements	The manufacturer shall procure a certificate of compliance to this	As per IPC 9797 §4.2.4	IPC specific, Not defined by ESCC3401
Compliant Pin Insertion Force	Acceptable criteria: meet the manufacturer requirement	As per IPC 9797 § 4.3.1	IPC specific, Not defined by ESCC3401
Compliant Pin Retention Force	Acceptable criteria : meet the manufacturer requirement	As per IPC 9797 § 4.3.5	IPC specific, Not defined by ESCC3401
PCB Hole deformation radius	Cross-section: • Below 70µm of deformation • At lest 8µm of copper remaining	As per IPC 9797 §4.3.6	IPC specific, Not defined by ESCC3401
PCB Hole wall Damage	Cross-section • Deformation lower than 100μm • No cracks or whites marks (darkfield)	As per IPC 9797 §4.3.6	IPC specific, Not defined by ESCC3401
Reparability	Mandatory: the connector should be replaced at least one time The target is 3 times. Procedure and tooling to be described by the manufacturer.	To be discussed with the manufacturer	Not defined by ESCC3401
Plating Thickness (Plated-Through Hole Copper Thickness)	.2.1.4 Plated-Through Hole Copper Thickness Absolute minimum 25 pm [984 pin] • Absolute maximum 55 pm [2165 pin] • Minimum average 33 im [1299 pin] • Diameter e of finished) hole X, 0 of drilled hole Y: — X = Y — 0,085 mm [0.003 in] — tor 0.5 mm [0.02 in] X 0.8 mm [0.031 in]: tolerance of X ± 0.04 mm [0.0015 in] — for 0.8 mm [0.031 in] < X 2.2 mm [0.087 ml: tolerance of X ± 0.05 mm [0.002 in] 3.2.3 Surface Finish Common surface finishes tor press-flt applications arc: • Immersion Sn: 1.0 - 1.5 pm [39 - 59 pin) • Immersion Ag: 0.1 - 0.5 .μm [3.9 - 20 pin] • OSP: 0.2 - 0.5 ijm [7.9 - 20 pin] • ENIG: — Ni: 3 - 7 pm [118 - 276 pin], and — Immersion Au: 0.05 - 0.1 pm [1.2 - 3.9 μin]	As per IPC 9797 §3.2.1.4 for copper And § 3.2.3 for surface finish if different thicknesses are qualified AABUS shall be agreed.	IPC specific, Not defined by ESCC3401
Pressfit hole annular ring Annular	3.2.1.3 Minimum Annual Ring Minimum annular ring after etching should be at least 0.15 mm [0.006 in].	As per IPC 9797 § 3.2.1.3	IPC specific, Not defined by ESCC3401
Backdrilling compatibility	Yes/No?	If yes please specify the n tolerances.	nin nominal remaining hole length with min/max

- 1 Background
- 2 Solution
- 3 Specification
- 4 Test Plan

5 Conclusion



ALTER TECHNOLOGY

HYPERBITS™ Connector Design and Qualification For High Reliability Compact PCI Serial Space Applications

(Part II: Evaluation Activities)

Prepared by **Dimas J. Morilla Mairén**, Technical Support Manager

INTRODUCTION

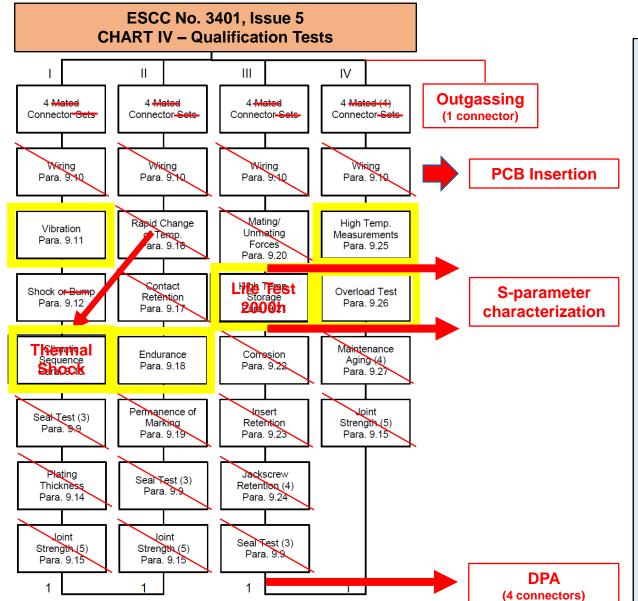
The evaluation activities shall start in December of 2022.

Note: the following **information may be updated** before that date.

This exercise will represent a significant first step in the path towards the full qualification of interconnect devices for CPCI Serial Space systems.

TEST FLOW

RECEIVING 100% of samples INCOMING INSPECTION 100% of samples


> 4 subgroups **CHART IV. Subgroup I Qualification Test** (TV1) Mechanical + Climatic CHART IV. Subgroup II Qualification Test **Endurance** Mating + Unmating 500 cycles **CHART IV. Subgroup III Qualification Test** (TV3) Life test up to 2000h **CHART IV. Subgroup IV Qualification Test** (TV4) Overload **DESTRUCTIVE PHYSICAL ANALYSIS** OUTGASSING ECSS-Q-ST-70-02C

Applicable documents:

- DOC-EEE-000218505, Issue 2
 cPCI Serial Connector for Space
- ESCC Generic Specification No. 3401
 Connectors, Electrical Non-Filtered, Circular and Rectangular

CHART IV – QUALIFICATION TESTS: DEVIATIONS

Total number of failures: 1

- TECHNOLOGY
- **1.-** ALTER Technology suggested to include an **Outgassing** test as this may be one of the most critical points.
- **2.- Microsection** is not performed after Subgroup I. In the specification document with ref. DOC-EEE-000218505, Issue 2, this is requested as part of the Assembly Verification. Anyway, ALTER Technology has included a **Destructive Physical Analysis** (covering Cross Section) to be performed on samples subjected to the previous CHART IV Qualification Tests Subgroup III (Life Test).
- **3.-** A biased Life Test is missing. **2000h Life Test** is requested as part of the Assembly Verification in the specification document with ref. DOC-EEE-000218505, Issue 2. Environmental specification and ESCC 3401 only consider High Temperature Storage test.

ALTER Technology proposed to <u>replace the High Temperature</u> Storage test of Subgroup III by a biased Life Test at 125°C. Intermediate measurements (S-parameters) at room, high and low temperatures were included after 500h and 1000h.

4.- Rapid Change of Temperature (**Thermal Shock**) was reallocated from Subgroup II into Subgroup I, replacing Climatic Sequence Dry Heat and Damp heat Accelerated tests.

CHART IV – QUALIFICATION TESTS SUBGROUP I (TV1)

N.º	TEST	SAMPLES	TEST METHOD
1	External Visual Inspection	4 + control	ESCC 20500
2	PCB Insertion	4 + control	TBD (Note 1)
3	Electrical Measurement at Room Temperature	4 + control	TABLE II of Test Plan
4	External Visual Inspection	4 + control	ESCC 20500
5	Sine Vibration	4	ESCC 3401 Par. 9.11 (Notes 2 & 3)
6	External Visual Inspection	4 + control	ESCC 20500
7	Random Vibration	4	ESCC 3401 Par. 9.11 (Notes 2 & 4)
8	External Visual Inspection	4 + control	ESCC 20500
9	Mechanical Shock	4	ESCC 3401 Par. 9.12.1 (Notes 2 & 5)
10	External Visual Inspection	4 + control	ESCC 20500
11	Electrical Measurement at Room Temperature	4 + control	TABLE II of Test Plan
13	Thermal Shock	4	TABLE III of Test Plan
14	Electrical Measurement at Room Temperature	4 + control	TABLE II of Test Plan
15	External Visual Inspection	4 + control	ESCC 20500

1.- IPC Class 3 requirements shall be preferred for PCB manufacturing.

Details on mounting shall be provided by manufacturer in each case. In the absence of those, insertion speed shall be between 25 mm/min and 50 mm/min as per NF EN60352-5, Para. 5.2.2.2.

2.- No impedance change or discontinuity of 1 ns or longer duration in accordance with EIA-364-87.

3.- Sinusoidal Vibration

- Frequency range: 10-2000-10 Hz.
- Entire range from 10 Hz to 2000 Hz and return to 10 Hz in 30 mn.
- Amplitude: 1,5mm or 20g whichever is less.
- The cycle shall be performed in 3 mutual perpendicular direction total period of approximately 90 minutes.

4.- Random Vibration

- □ Fda f1= 20 Hz
- 12 = 2000 Hz
- ASD of 0,2 g2/Hz
- Total test period 30 minutes
- ^a The cycle shall be performed in 3 mutual perpendicular direction total period of approximately 90 minutes.

5.- Mechanical Shock

- Shape of shock pulse: half-sine.
- A peak acceleration of 50 g with an 11 ms duration pulse.
- 3 shocks in each direction along the 3 mutually perpendicular directions (i.e. 18 in total).

CHART IV – QUALIFICATION TESTS SUBGROUP I (TV1)

Table II of ATN-SC-1013: Electrical Measurements at Room Temperature

N.º	TEST		CONDITIONS (T _A = 25 °C)		LIMITS		
				MIN.	MAX.		
1	R _C	<mark>Contact</mark> Resistance	ТВС	TBC	TBC	mOhm	
2	V_p	Voltage Proof	TBC	TBC	TBC		
3	R _I	Insulation Resistance	ТВС	ТВС	ТВС	MOhm	

1.- Parameters, conditions and limits are TBC depending on the test vehicle definition.

Table III of ATN-SC-1013: Conditions for Thermal Shock

NUMBER OF CYCLES: 20						
STEP	TEMPERATURE	TIME				
1	-55 ºC (+0, -10)	≥10 min				
2	125 ºC (+15, -0)	≥10 min				

CHART IV – QUALIFICATION TESTS SUBGROUP II (TV2)

N.º	TEST	SAMPLES	TEST METHOD
1	External Visual Inspection	4 + control	ESCC 20500
2	PCB Insertion	4 + control	TBD (Note 1)
3	External Visual Inspection	4 + control	ESCC 20500
4	Electrical Measurement at Room Temperature	4 + control	TABLE II of Test Plan
5	Endurance until 50 times (Note 3)	4	ESCC 3401 Par. 9.18 (Note 2)
6	Electrical Measurement at Room Temperature	4 + control	TABLE II of test Plan
7	Endurance until 500 times	4	ESCC 3401 Par. 9.18 (Note 2)
8	Electrical Measurement at Room Temperature	4 + control	TABLE II of Test Plan
9	External Visual Inspection	4 + control	ESCC 20500

1.- IPC Class 3 requirements shall be preferred for PCB manufacturing.

Details on mounting shall be provided by manufacturer in each case. In the absence of those, insertion speed shall be between 25 mm/min and 50 mm/min as per NF EN60352-5, Para. 5.2.2.2.

- **2.-** Test conditions: 500 Cycles. A cycle is defined as one mating and one un-mating. The coupling means shall be operated in a manner to simulate actual service. The plug and receptacle shall be completely separated during each cycle. The mating/unmating speed shall be 5 mm/second maximum and the cycling rate shall be 8 cycles/minute maximum.
- 3.- Number of cycles for intermediate measurement of endurance test is TBC.

CHART IV – QUALIFICATION TESTS SUBGROUP III (TV3)

N.º	TEST	SAMPLES	TEST METHOD
1	External Visual Inspection	4 + control	ESCC 20500
2	PCB Insertion	4 + control	TBD (Note 1)
3	External Visual Inspection	4 + control	ESCC 20500
4	Electrical Measurements at Room Temperature	4 + control	TABLE VII of Test Plan
5	Electrical Measurements at High Temperature	4	TABLE VIII of Test Plan
6	Electrical Measurements at Low Temperature	4	TABLE IX of Test Plan
7	Life Test (until 500 h)	4	TABLE VII of Test Plan
8	Electrical Measurements at Room Temperature	4 + control	TABLE VII of Test Plan
9	Electrical Measurements at High Temperature	4	TABLE VIII of Test Plan
10	Electrical Measurements at Low Temperature	4	TABLE IX of Test Plan
11	Life Test (until 1000 h)	4	TABLE VII of Test Plan
12	Electrical Measurements at Room Temperature	4 + control	TABLE VII of Test Plan
13	Electrical Measurements at High Temperature	4	TABLE VIII of Test Plan
14	Electrical Measurements at Low Temperature	4	TABLE IX of Test Plan
15	Life Test (until 2000 h)	4	TABLE VII of Test Plan
16	Electrical Measurement at Room Temperature	4 + control	TABLE VII of Test Plan
17	Electrical Measurements at High Temperature	4	TABLE VIII of Test Plan
18	Electrical Measurements at Low Temperature	4	TABLE IX of Test Plan
19	External Visual Inspection	4 + control	ESCC 20500

N.º	TEST	SAMPLES	TEST METHOD
1	External Visual Inspection	4	ESCC 20500
2	Lead Material Verification (Note 1)	1	ESCC 20500
3	Radiographic Inspection	4	ESCC 20900
4	Marking Permanence	4	ESCC 24800
5	Cross Section (Note 2)	4	ESCC 20400

Destructive Physical Analysis

1.- IPC Class 3 requirements shall be preferred for PCB manufacturing.

Details on mounting shall be provided by manufacturer in each case. In the absence of those, insertion speed shall be between 25 mm/min and 50 mm/min as per NF EN60352-5, Para. 5.2.2.2.

CHART IV – QUALIFICATION TESTS SUBGROUP III (TV3)

Table VI of ATN-SC-1013: Conditions For Life Test

N.º	CHARACTERISTIC	SYMBOL	CONDITION	UNIT
1	Duration	t	<mark>2000</mark>	h
2	Ambient temperature	T _A	<mark>125</mark>	ºC
3	Rated Current	I _{rated}	2	A

Tables VII, VIII and IX of ATN-SC-1013: Electrical Characterization at Room (+25°C), High (+125°C) and Low (-55°C) Temperatures

			LIMITS		LINII	
N.º	TEST		EST CONDITIONS		MAX.	T T
1	Z _{diff}	Differential impedance	Between two adjacent pins.	95	105	Ohm
			Up to 3.12GHz		1	dB
2	IL	Insertion loss	Up to 6.25GHz		1.5	dB
			Up to 12.5GHz		2	dB
		Cross talk (Near end pins)	Up to 3.12GHz		-39	dB
3	X talk _{near}		Up to 6.25GHz		-34	dB
			Up to 12.5GHz		-29	dB
		Cross talk Xtalk _{far} (Far end pins)	Up to 3.12GHz		-42	dB
4	Xtalk _{far}		Up to 6.25GHz		-34	dB
			Up to 12.5GHz		-26	dB

1.- Parameters, conditions, and limits are TBC depending on the test vehicle definition. Values are given as target.

S-parameters were proposed to performed in an independent subgroup because the design requirements for this measurement are completely different to those required for environmental testing. Differential pair routing is compulsory to properly characterize S-parameters, while for environmental test, contact shall connected in series for electrical monitoring. This fact, together with the high number of contact count, makes the design of both PCBs completely different and no compatible one with another.

For this reason, the S-parameters characterization will be performed as part of Subgroup III (TV3) replacing the current electrical characterization.

CHART IV – QUALIFICATION TESTS SUBGROUP IV (TV4)

N.º	TEST	SAMPLES	TEST METHOD
1	External Visual Inspection	4 + control	ESCC 20500
2	PCB Insertion	4 + control	TBD (Note 1)
3	External Visual Inspection	4 + control	ESCC 20500
4	Electrical Measurement at Room Temperature	4 + control	TABLE II of Test Plan
5	High Temperature Measurements	4	TABLE XII of Test Plan
6	Electrical Measurement at Room Temperature	4 + control	TABLE II of Test Plan
7	External Visual Inspection	4 + control	ESCC 20500
8	Overload Test	4	TABLE XI of Test Plan
9	Electrical Measurement at Room Temperature	4 + control	TABLE II of Test Plan
10	External Visual Inspection	4 + control	ESCC 20500

1.- IPC Class 3 requirements shall be preferred for PCB manufacturing.

Details on mounting shall be provided by manufacturer in each case. In the absence of those, insertion speed shall be between 25 mm/min and 50 mm/min as per NF EN60352-5, Para. 5.2.2.2.

CHART IV – QUALIFICATION TESTS SUBGROUP IV (TV4)

Table XI of ATN-SC-1013: Conditions For Overload Test

N.º	CHARACTERISTIC	SYMBOL	CONDITION	UNIT
1	Duration	t	<mark>10</mark>	min
2	Ambient temperature	T _A	<mark>25</mark>	eC
3	Rated Current	I _{CURRENT}	Note 1	А

1.- A current of 1.5 times the rated current specified in the manufactures for each contact size shall be passed through all contacts for a period of 30 seconds. This shall be followed by a period of 90 seconds with no current flowing. This shall constitute 1 cycle. The cycle shall be repeated 5 times (10 minutes total).

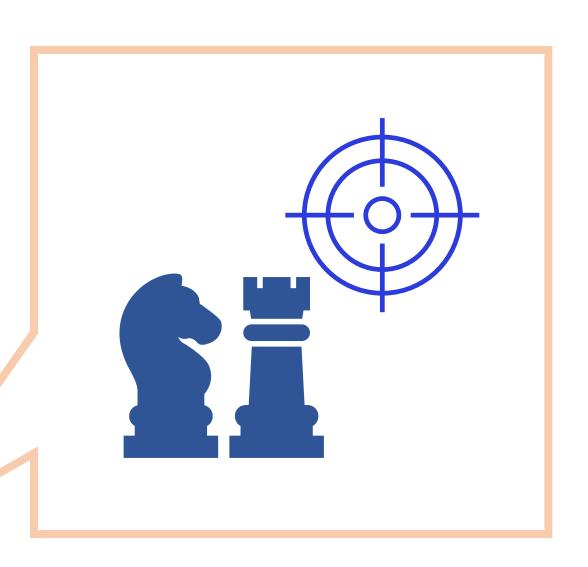
Table XII of ATN-SC-1013: High Temperature Measurements

N.º	CHARACTERISTIC	SYMBOL	CONDITION	UNIT
1	Duration	t	<mark>30</mark>	Min.
2	Ambient temperature	T _A	<mark>+125</mark>	ōС
3	Bias Voltage	$oldsymbol{V}_{BiAS}$	Not Biased	-

THANK YOU FOR YOUR ATTENTION

Dimas J. Morilla Mairén
Technical Support Manager
https://www.linkedin.com/in/dimas-morilla-mairén/

dimas.morilla@altertechnology.com +34 664704547


<u>Visit the web site of our service</u> https://wpo-altertechnology.com/

- 1 Background
- 2 Solution

- 3 Specification
- 4 Test Plan

5 Conclusion

The Future of S-FECT Technology:

- 1: MINIATURIZATION contact diameters feasible to 0.02mm ultra-fine diameter
- 2: IMPROVED POWER Transfer for high power microprocessors & transfer through small footprint
- 3: Thermal Transfer through connector important need to manage thermal build-up

S-FECT™ Technology will contribute to the **advancement** of harsh environment electronics architectures with significant advantages:

SIMPLE IMPLEMENTATION

LOW COST HIGH RELIABILITY

NOW AVAILABLE FOR LICENSING AGREEMENT

contact:

Questions?

Thank you!

